3.29.77 \(\int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx\) [2877]

3.29.77.1 Optimal result
3.29.77.2 Mathematica [C] (verified)
3.29.77.3 Rubi [A] (verified)
3.29.77.4 Maple [B] (verified)
3.29.77.5 Fricas [C] (verification not implemented)
3.29.77.6 Sympy [F]
3.29.77.7 Maxima [F]
3.29.77.8 Giac [F]
3.29.77.9 Mupad [F(-1)]

3.29.77.1 Optimal result

Integrand size = 28, antiderivative size = 125 \[ \int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx=-\frac {2 \sqrt {1-2 x} (2+3 x)^{3/2}}{165 (3+5 x)^{3/2}}-\frac {404 \sqrt {1-2 x} \sqrt {2+3 x}}{9075 \sqrt {3+5 x}}-\frac {2797 E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{1375 \sqrt {33}}-\frac {598 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{1375 \sqrt {33}} \]

output
-2797/45375*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2) 
-598/45375*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)- 
2/165*(2+3*x)^(3/2)*(1-2*x)^(1/2)/(3+5*x)^(3/2)-404/9075*(1-2*x)^(1/2)*(2+ 
3*x)^(1/2)/(3+5*x)^(1/2)
 
3.29.77.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 7.26 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.74 \[ \int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx=\frac {-\frac {10 \sqrt {1-2 x} \sqrt {2+3 x} (716+1175 x)}{(3+5 x)^{3/2}}+2797 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-3395 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )}{45375} \]

input
Integrate[(2 + 3*x)^(5/2)/(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2)),x]
 
output
((-10*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(716 + 1175*x))/(3 + 5*x)^(3/2) + (2797* 
I)*Sqrt[33]*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (3395*I)*Sqrt[33 
]*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])/45375
 
3.29.77.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.11, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {109, 27, 167, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(3 x+2)^{5/2}}{\sqrt {1-2 x} (5 x+3)^{5/2}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle -\frac {2}{165} \int -\frac {\sqrt {3 x+2} (291 x+215)}{2 \sqrt {1-2 x} (5 x+3)^{3/2}}dx-\frac {2 \sqrt {1-2 x} (3 x+2)^{3/2}}{165 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{165} \int \frac {\sqrt {3 x+2} (291 x+215)}{\sqrt {1-2 x} (5 x+3)^{3/2}}dx-\frac {2 \sqrt {1-2 x} (3 x+2)^{3/2}}{165 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 167

\(\displaystyle \frac {1}{165} \left (\frac {2}{55} \int \frac {3 (2797 x+2336)}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {404 \sqrt {1-2 x} \sqrt {3 x+2}}{55 \sqrt {5 x+3}}\right )-\frac {2 \sqrt {1-2 x} (3 x+2)^{3/2}}{165 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{165} \left (\frac {3}{55} \int \frac {2797 x+2336}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {404 \sqrt {1-2 x} \sqrt {3 x+2}}{55 \sqrt {5 x+3}}\right )-\frac {2 \sqrt {1-2 x} (3 x+2)^{3/2}}{165 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{165} \left (\frac {3}{55} \left (\frac {3289}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {2797}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {404 \sqrt {1-2 x} \sqrt {3 x+2}}{55 \sqrt {5 x+3}}\right )-\frac {2 \sqrt {1-2 x} (3 x+2)^{3/2}}{165 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{165} \left (\frac {3}{55} \left (\frac {3289}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {2797}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {404 \sqrt {1-2 x} \sqrt {3 x+2}}{55 \sqrt {5 x+3}}\right )-\frac {2 \sqrt {1-2 x} (3 x+2)^{3/2}}{165 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{165} \left (\frac {3}{55} \left (-\frac {598}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {2797}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {404 \sqrt {1-2 x} \sqrt {3 x+2}}{55 \sqrt {5 x+3}}\right )-\frac {2 \sqrt {1-2 x} (3 x+2)^{3/2}}{165 (5 x+3)^{3/2}}\)

input
Int[(2 + 3*x)^(5/2)/(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2)),x]
 
output
(-2*Sqrt[1 - 2*x]*(2 + 3*x)^(3/2))/(165*(3 + 5*x)^(3/2)) + ((-404*Sqrt[1 - 
 2*x]*Sqrt[2 + 3*x])/(55*Sqrt[3 + 5*x]) + (3*((-2797*Sqrt[11/3]*EllipticE[ 
ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 - (598*Sqrt[11/3]*EllipticF[Arc 
Sin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5))/55)/165
 

3.29.77.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 167
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b*e - 
a*f)*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b* 
c*(f*g - e*h)*(m + 1) + (b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h 
)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d, 
e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.29.77.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(218\) vs. \(2(93)=186\).

Time = 1.38 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.75

method result size
default \(-\frac {\left (16005 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-13985 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+9603 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-8391 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )+70500 x^{3}+54710 x^{2}-16340 x -14320\right ) \sqrt {1-2 x}\, \sqrt {2+3 x}}{45375 \left (6 x^{2}+x -2\right ) \left (3+5 x \right )^{\frac {3}{2}}}\) \(219\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {2 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{20625 \left (x +\frac {3}{5}\right )^{2}}-\frac {94 \left (-30 x^{2}-5 x +10\right )}{9075 \sqrt {\left (x +\frac {3}{5}\right ) \left (-30 x^{2}-5 x +10\right )}}+\frac {4672 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{317625 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {5594 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{317625 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(219\)

input
int((2+3*x)^(5/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/45375*(16005*5^(1/2)*7^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))*x 
*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)-13985*5^(1/2)*7^(1/2)*Elliptic 
E((10+15*x)^(1/2),1/35*70^(1/2))*x*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1 
/2)+9603*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*Ellipt 
icF((10+15*x)^(1/2),1/35*70^(1/2))-8391*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2 
*x)^(1/2)*(-3-5*x)^(1/2)*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))+70500*x^ 
3+54710*x^2-16340*x-14320)*(1-2*x)^(1/2)*(2+3*x)^(1/2)/(6*x^2+x-2)/(3+5*x) 
^(3/2)
 
3.29.77.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.70 \[ \int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx=-\frac {900 \, {\left (1175 \, x + 716\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} + 145909 \, \sqrt {-30} {\left (25 \, x^{2} + 30 \, x + 9\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) - 251730 \, \sqrt {-30} {\left (25 \, x^{2} + 30 \, x + 9\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{4083750 \, {\left (25 \, x^{2} + 30 \, x + 9\right )}} \]

input
integrate((2+3*x)^(5/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x, algorithm="fricas")
 
output
-1/4083750*(900*(1175*x + 716)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) 
+ 145909*sqrt(-30)*(25*x^2 + 30*x + 9)*weierstrassPInverse(1159/675, 38998 
/91125, x + 23/90) - 251730*sqrt(-30)*(25*x^2 + 30*x + 9)*weierstrassZeta( 
1159/675, 38998/91125, weierstrassPInverse(1159/675, 38998/91125, x + 23/9 
0)))/(25*x^2 + 30*x + 9)
 
3.29.77.6 Sympy [F]

\[ \int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx=\int \frac {\left (3 x + 2\right )^{\frac {5}{2}}}{\sqrt {1 - 2 x} \left (5 x + 3\right )^{\frac {5}{2}}}\, dx \]

input
integrate((2+3*x)**(5/2)/(3+5*x)**(5/2)/(1-2*x)**(1/2),x)
 
output
Integral((3*x + 2)**(5/2)/(sqrt(1 - 2*x)*(5*x + 3)**(5/2)), x)
 
3.29.77.7 Maxima [F]

\[ \int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {5}{2}}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((2+3*x)^(5/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x, algorithm="maxima")
 
output
integrate((3*x + 2)^(5/2)/((5*x + 3)^(5/2)*sqrt(-2*x + 1)), x)
 
3.29.77.8 Giac [F]

\[ \int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {5}{2}}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((2+3*x)^(5/2)/(3+5*x)^(5/2)/(1-2*x)^(1/2),x, algorithm="giac")
 
output
integrate((3*x + 2)^(5/2)/((5*x + 3)^(5/2)*sqrt(-2*x + 1)), x)
 
3.29.77.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{5/2}}{\sqrt {1-2 x} (3+5 x)^{5/2}} \, dx=\int \frac {{\left (3\,x+2\right )}^{5/2}}{\sqrt {1-2\,x}\,{\left (5\,x+3\right )}^{5/2}} \,d x \]

input
int((3*x + 2)^(5/2)/((1 - 2*x)^(1/2)*(5*x + 3)^(5/2)),x)
 
output
int((3*x + 2)^(5/2)/((1 - 2*x)^(1/2)*(5*x + 3)^(5/2)), x)